
Journal of Sound and Vibration (1997) 207(4), 465–496

GEOMETRIC STIFFNESS AND STABILITY OF
RIGID BODY MODES

H. E-A  A. A. S

Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria
University, Egypt



A. A. S

Department of Mechanical Engineering, University of Illinois at Chicago,
842 West Taylor Street, Chicago, Illinois, 60607-7022, U.S.A.

(Received 15 November 1996, and in final form 24 March 1997)

The objective of this study is to examine the effect of geometric stiffness forces on
the stability of elastic and rigid body modes. A simple rotating beam model is used
to demonstrate the effect of axial forces and dynamic coupling between the modes of
displacement on the rigid body motion. The effect of longitudinal deformation due to
bending is systematically introduced to the dynamic equations using the principle of virtual
work. The effect of higher order terms in the inertia forces as the result of including
longitudinal displacement caused by bending deformation is examined using several
models. One of these models is a linear model in which the effect of longitudinal
displacement due to bending is neglected in formulating the inertia forces, but this effect
is considered when the elastic forces are formulated. This model shows unstable behavior
at high values of the angular velocity of the beam. Three different beam models are then
developed in order to examine the effect of geometric stiffness forces. In the first model,
called the consistent complete model (CCM), the effect of longitudinal displacement caused
by bending is included in formulating both the inertia and elastic forces. In the second
model, called the consistent incomplete model (CIM), the effect of longitudinal displacement
due to bending is neglected in formulating both the elastic and inertia forces. In the third
model, the second inconsistent model (SIM), the effect of longitudinal displacement due to
bending is included in formulating the inertia forces, but this effect is neglected when the
elastic forces are formulated. Numerical results obtained in this investigation demonstrate
that the three models lead to a stable solution at high values of angular velocities. These
results also demonstrate that including the effect of longitudinal displacement due to
bending in the inertia forces is not the only approach that can be used to maintain the beam
stability at high values of angular velocity. The effect of geometric stiffness forces on the
stability of rigid body modes of a translating and rotating beam model is also examined
in this paper.
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1. INTRODUCTION

The effect of the instability of elastic modes on the stability of rigid body modes was
recently examined [1]. A three dimensional beam model, in which the coupling between
the axial, in-plane, and out-of-plane bending deformation is considered, was developed.
It was demonstrated using this model that the neglect of the geometric stiffness forces can
lead to unstable solution for the elastic modes, and this in turn causes the instability
of the rigid body modes due to the dynamic coupling. The results obtained in this study
also demonstrated that rotating and translating beam models, in which the effect of
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geometric stiffness is neglected, can have stable solutions at some ranges of relatively
high speeds, and the stability limit depends on the ratio between the bending and axial
stiffness coefficients of the beam. While the effect of geometric stiffness on the dynamics
of rotating beams has been examined in several investigations [2–7], no attempt has been
made to develop a more complete non-linear model that can be used to examine the effect
of longitudinal displacement caused by bending deformation on the stability of rigid
body modes.

In these investigations, the geometric effect of longitudinal displacement due to bending
is examined and its effect on the stability of the rigid body modes of a translating and
rotating beam is discussed. The effect of the longitudinal displacement due to bending is
systematically introduced to the dynamic equations of the rotating beam using the
principle of virtual work. Using this approach, all the non-linear terms that result from
introducing the effect of the longitudinal displacement caused by bending deformation
can be systematically formulated and their effects can be numerically examined. Using the
results of this preliminary numerical study, three different beam models have been
developed. In the first model, the effect of the longitudinal displacement due to bending
in both the inertia and elastic forces is included. This model, which is called in this
investigation the CCM, leads to the definition of the geometric stiffening force which is
required to maintain the stability of the rotating beams when the angular velocity increases.

Using the co-ordinate transformation suggested by Mayo et al. [5], a simple form for
the strain energy is obtained despite the fact that a non-linear strain displacement
relationship is used. In the second model, which is referred to as CIM, the effect of
longitudinal displacement caused by bending is neglected when both the inertia and elastic
forces are formulated. It is demonstrated that this model also leads to a stable solution
at high values of the angular velocity of the rotating beam. A third model that leads to
a stable solution for the rotating beam has also been developed in this study. In this model,
the effect of longitudinal displacement caused by bending is neglected in formulating the
elastic forces and this effect is considered in formulating the inertia forces. The effect of
longitudinal displacement due to bending on the stability of the rigid body modes of a
translating and rotating beam model is also examined in this investigation.

2. AXIAL AND BENDING DEFORMATIONS

In this section, the two-dimensional rotating flexible beam model shown in Figure 1(a)
is first considered. The beam is assumed to rotate about the Z-axis with an angular

Figure 1. (a) Undeformed rotating beam, (b) deformed rotating beam.
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velocity u� . The origin of the beam co-ordinate system is assumed to be fixed, and therefore,
the beam does not undergo a translational motion. The global position vector of an
arbitrary point on the beam can be written as

r=Aū, (1)

where A is the planar rotation matrix defined as

A=$cos u

sin u

−sin u

cos u %, (2)

and ū is the local position vector of the arbitrary point on the beam, which is defined as

ū= ūo + ūf . (3)

In this equation, ūo =[x 0]T is the position vector of an arbitrary point on the beam in
the undeformed configuration, ūf =[ut v]T is the deformation vector, v is the transverse
displacement, and ut is the total longitudinal displacement which is defined as [5]

ut = u+ ur + ug . (4)

The displacement u is the longitudinal deformation due to the axial elastic motion of the
points on the center line of the beam, ug is the longitudinal displacement caused by
the transverse deflection of the beam, and ur =−y 1v/1x is the result of the rotation
of the cross-section. In the case of a slender beam, the effect of the displacement ur

can be neglected. In order to evaluate the displacement ug , one observes from Figure 1(b)
that

ds− dx=z(dx)2 + (dv)2 − dx=z1+ (1v/1x)2dx− dx= 1
2 (1v/1x)2dx,

where ds is an infinitesimal arc length. It follows from the preceding equation that

ug =−g
x

0

(ds− dx)=−
1
2 g

x

0 01v
1x1

2

dx. (5)

The axial and bending displacements can be expressed in terms of space dependent shape
functions and time dependent co-ordinates as

$uv%=Sqf =$S1

0
0
S2%$qf1

qf2%, (6)

where S1 and S2 are the rows of the shape function matrix S associated with the axial and
in-plane directions respectively, and qf1 and qf2 are the axial and in-plane transverse
components of the time dependent elastic co-ordinate vector qf .

The position vector r of equation (1) can be written more explicitly as

r=A(ūo + ūf ). (7)

A virtual change of this vector can be written as

dr=Au ū du+A dūf , (8)

where Au is the derivative of A with respect to u. The velocity and acceleration vectors
can be obtained by differentiating equation (7) as

ṙ= u� Au ū+Aū
.

f , r̈= u� Au ū− u� 2Aū+2u� Au ū
.

f +Aū
..

f . (9, 10)
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3. VIRTUAL WORK AND STRAIN ENERGY

The virtual work of the inertia force can be written as

dWi =gV

rr̈T dr dV. (11)

Substituting equations (8) and (10) into equation (11), one obtains

dWi = dWl + dWg , (12)

where dWl is the virtual work of the inertia forces which does not include the effect of ug ,
while dWg is the change in the virtual work of the inertia forces as the result of including
the displacement ug . These two components of the virtual work are defined as

dWl = dWlu + dWlu + dWlv , dWg = dWgu + dWgu + dWgv + dWgug , (13, 14)

where the components of the virtual work dWl are defined as

dWlu =gV

r[u� {(x+ u)2 + v2}+2u� {u̇(x+ u)+ v̇v}+ v̈(x+ u)− üv] du dV, (15)

dWlu =gV

r[ü−2u� v̇− u� 2(x+ u)− u� v] du dV, (16)

dWlv =gV

r[v̈+2u� u̇− u� 2v+ u� (x+ u)] dv dV, (17)

and the components of the virtual work that appear in dWg are

dWgu =gV

r[u� {2ug (x+ u)+ u2
g}+2u� {u̇g (x+ u)+ u̇ug + u̇gug}+ {v̈ug − vüg}] du dV,

(18)

dWgu =gV

r(üg − u� 2ug ) du dV, dWgv =gV

r(u� ug +2u� u̇g ) dv dV, (19, 20)

dWgug =gV

r[−u� v− u� 2{(x+ u)+ ug}−2u� v̇+(ü+ üg )] dug dV. (21)

3.1.  

In calculating the strain energy for a two-dimensional beam, the contribution from
the shearing strains will be neglected. Thus, only the effect of the normal strains will be
considered. In this case, the strain energy can be written as

U=gV $g
oxx

0

sxdoxx% dV. (22)

For the case of isotropic linear material,

sx =Eoxx , (23)
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where E is the modulus of elasticity. Substituting equation (23) into equation (22) and
integrating leads to

U=
1
2 g

l

0

EAe2
xx dx, (24)

where A is the cross-sectional area of the beam and l is the length. Using a non-linear
strain–displacement relationship, the normal strain exx can be written as

exx = 1ui /1x− y 12v/1x2 + 1
2 (1v/1x)2, (25)

where ui = u+ ug .
Substitute equation (25) into equation (24) the strain energy can be written as

U=
1
2 g

l

0

EA01ui

1x1
2

dx+
1
2 g

l

0

EI012v
1x21

2

dx+
1
2 g

l

0

EA
1ui

1x 01v
1x1

2

dx+
1
2 g

l

0

EA
4 01v

1x1
4

dx,

(26)

where I is the second moment of area of the beam cross-section.

3.2. - 

If the longitudinal displacement caused by the transverse deflection ug is neglected
and only that due to the axial deformation u is considered, the first two second order
integrals in equation (26) will yield linear axial and transverse stiffness terms which
appear when a linear elastic model is used. The third integral has a third order term
and therefore will give rise to a second order elastic force or stiffness term which
couples the axial and bending displacements. The fourth integral is a function of the
non-linear strain only, and it has a fourth order term yielding a stiffness coefficient of third
order [5].

Using the definition of ug given by equation (5), the displacement ui can be written
as [5]

ui = u−
1
2 g

x

0 01v
1x1

2

dx. (27)

It follows that

1ui /1x= 1u/1x− 1
2 (1v/1x)2. (28)

Substituting equation (28) into equation (26), one obtains

U=
1
2 g

l

0

EA01u
1x1

2

dx+
1
2 g

l

0

EI012v
1x21 dx. (29)

It is clear from this equation that the consideration of the longitudinal displacement
caused by the transverse deflection ug removes third and higher order terms from the
strain energy expression. This will lead to a constant stiffness matrix if the strain
energy is written in terms of u instead of ui . In this case, the strain energy can simply be
written as

U= 1
2q

T
f Kffqf , (30)
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where Kff is the conventional constant stiffness matrix which can be written as

Kff =$k11

0
0
k22% (31)

and k11 and k22 are the axial and transverse stiffness coefficients, respectively.

3.3.      

If the angular velocity is specified and assumed to be constant, the virtual work
components dWl and dWg reduce to

dWl =gV

r[ü−2u� v̇− u� 2(x+ u)] du dV+gV

r[v̈+2u� u̇− u� 2v] dv dV, (32)

dWg =gV

r(üg − u� 2ug ) du dV+gV

2ru� u̇g dv dV

+gV

r[−u� 2{(x+ u)+ ug}−2u� v̇+(ü+ üg )] dug dV. (33)

If one further assumes that the effect of the axial displacement u on the transverse vibration
is small such that it can be ignored, the virtual work components dWl and dWg can be
further reduced to

dWl =gV

r[v̈− u� 2v] dv dV, (34)

dWg =gV

2ru� u̇g dv dV+gV

r[−u� 2(x+ ug )−2u� v̇+ u� g ] dug dV. (35)

Note that in equations (34) and (35), the effect of the axial displacement due to bending
is considered. In later sections, the effect of the axial displacement u on the bending
vibration of the rotating beam will also be examined. Let

v=S2qf2, ug = 1
2q

T
f2B(x)qf2. (36)

It follows that

dv=S2 dqf2, dug = qT
f2B(x) dqf2, (37)

where

B(x)=−g
x

0 01ST
2

1x 101S2

1x 1 dx. (38)

Substituting the preceding equations into the expressions for the virtual work, one
obtains

dWi = dWl + dWg = q̈T
f2[Ml +Mg ] dqf2 − [(Qv )T

l +(Qv )T
g ] dqf2, (39)
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in which

Ml =gV

rST
2S2 dV, (Qv )l = u� 2 gV

rST
2S2 dVqf2 = u� 2Mlqf2, (40)

Mg =gV

B(x)qf2qT
f2B(x) dV, (41)

(Qv )T
g =−2u� q̇T

f2 gV

r{BT(x)qf2S2 −ST
2qT

f2BT(x)} dV

+ u� 2qT
f2 gV

r{xBT(x)+ 1
2BT(x)qf2qT

f2BT(x)} dV− q̇T
f2 gv

rBT(x)q̇f2qT
f2BT(x) dV. (42)

The vector (Qv )g can also be written as

(Qv )g = u� 2G1qf2 + u� G2q̇f2 +G3q̇f2, (43)

where

G1 =gV

r{xB(x)+ 1
2B(x)qf2qT

f2B(x)} dV, (44)

G2 =−2 gV

r{ST
2qT

f2B(x)−B(x)qf2S2} dV, G3 =−gV

rB(x)qf2q̇T
f2B(x) dV. (45, 46)

Note that G2 is a skew symmetric matrix, and G3 depends on the velocity.

4. DIFFERENT BEAM FORMULATIONS

It is important to point out that while the strain energy of equation (29) is formulated
in terms of the displacement u, this displacement component does not represent the total
axial deformation of the beam. The total displacement is defined by equation (4).
With regard to the definition of the axial displacement, there are several important
observations which are discussed in this section. These observations can be summarized
as follows.

(1) It is important to note that the use of the expression of ug as defined by
equation (5) automatically eliminates the non-linear term 1

2 (1v/1x)2 in the strain–
displacement relationship of equation (25). As a result, the use of ug and the transformation
of equation (27) leads to the simple form of the strain energy of equation (29). This strain
energy expression leads to a constant stiffness matrix. If the displacement ug is neglected,
the strain–displacement relationship is non-linear, and in this case the strain energy takes
the complex form given by equation (26).

(2) In view of the first observation, it is clear that when the effect of the axial
displacement due to bending is considered, the mass matrix becomes complex while the
stiffness matrix takes a simple form. This is the case of a CCM in which the effect of ug

is considered in formulating both the inertia and elastic forces.
(3) At relatively high values of the angular velocity of the beam, the use of an

inconsistent model may lead to unstable solution. One of the inconsistent models is to
neglect the effect of ug in formulating the inertia force, but to consider such an effect
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in formulating the elastic forces. This model leads to a constant mass matrix and also
will lead to the simple expression of strain energy as defined by equation (29). Therefore,
this model has a constant stiffness matrix as well as a constant mass matrix. It is important
to remember that such a simple inconsistent model is developed using the non-linear strain
displacement relationship of equation (25). This model produces a form of the equations
of motion similar to the case in which the effect of ug is neglected when both the inertia
and elastic forces are formulated and at the same time a linear strain–displacement
relationship is used. Therefore, this inconsistent model leads to the same results and
the same stability problems as the linear model in which the equations are formulated
without considering the effect of ug .

(4) A CIM can be developed by neglecting the effect of ug in formulating both the inertia
and elastic forces, while using the non-linear strain–displacement relationship of equation
(25). Note that if ug is neglected in this case, one must use the complex form of the strain
energy defined by equation (26). This leads to a non-linear stiffness matrix. This model
will be used to prove that if the effect of the axial displacement due to bending is neglected
in a consistent manner in a non-linear model, the rotating beam will not encounter the
instability problem at high values of the angular velocity. This in turn will prove that it
is not necessary to include the effect of the axial displacement caused by bending when
formulating the equations of motion in order to obtain a stable behavior of the beam at
relatively high values of the angular velocity.

(5) While including the effect of ug in formulating the stiffness matrix and neglecting its
effect in formulating the mass matrix leads to unstable behavior at relatively high values
of the angular velocity, the neglect of this effect in formulating the stiffness matrix while
including it in formulating the mass matrix leads to another inconsistent model that results
in a stable solution at the relatively high values of the angular velocity. Note that such
a model is an elastically non-linear model that includes elastic coupling between the axial
and bending displacements.

Before several of these models and their effect on the dynamics and stability of
rotating beams are discussed, a simple one-degree-of-freedom beam model is considered.
This model will be used in the following two sections to examine the effect of higher
order non-linear inertia terms that result from the use of the effect of the axial
displacement caused by the bending deformation. The numerical results obtained using
this simple model will be used as the basis for obtaining simpler, yet accurate models
that can be used to study the effect of the coupling between the bending and the axial
displacements.

5. A SIMPLE ONE-DEGREE-OF-FREEDOM BEAM MODEL

In this section, a simple one-degree-of-freedom rotating flexible beam model is
considered. This model will be used to examine the effect of the longitudinal displacement
ug resulting from the bending on the dynamics of the rotating beam. In this model, the
effect of the longitudinal displacement u is neglected. This effect will be considered in later
sections. The case in which the transverse in-plane displacement is described by one mode
of vibration is considered. In this case, the vector qf2 and the row vector S2 reduce to
scalars, given as

qf2 = qf2, S2 =S2. (47)

In the analysis presented in this section and the following section, the effect of ug is
considered in formulating the stiffness coefficient. Since the transformation of equation
(27) is employed, one obtains a constant stiffness coefficient despite the fact that a
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non-linear strain–displacement relationship is used. Note that if the effect of the axisl
displacement u is neglected, ui =−1

2 fx
0 (1v/1x)2 dx and the strain is exx =−y 12v/1x2

which leads to a simple form for the strain energy. In this and the following sections, the
effect of the inertia non-linearities that result from the use of the displacement ug will
be examined both analytically and numerically using the simple single-degree-of-freedom
model for the rotating beam.

In the model used in this investigation, the transverse deformation of the beam is
described by the shape function

S2 =3j2 − j3, (48)

where j= x/l. Substituting this value of S2 into equation (38), one obtains the function
B(x), which is a scalar in this case, defined as

B(x)=−(9/l)(4
3j

3 − j4 + 1
5j

5). (49)

By substituting the values of S2 and B(x) into equations (40), (41), (44–46) one obtains

Ml =33m/35, (Qv )l = u� 2Mlqf2, (50)

Mg =(1704m/385)(qf2/l)2, G1 =m{−81
70 +

852
385 (qf2/l)2}, (51)

G2 =0, G3 =−
1704m
385 0q̇f2qf2

l2 1, (52)

where m is the total mass of the beam. Using equations (40), (43) and (52) with equation
(39), one obtains the virtual work dWi as

dWi =[q̈f2(Ml +Mg )− u� 2(Ml +G1)qf2 −G3q̇f2] dqf2. (53)

If the external forces are neglected, the virtual work of the inertia forces is equal to the
virtual work of the elastic forces,

dWi = dWs , (54)

where dWi is defined by equation (53) and dWs is defined as

dWs =−dU=−qf2k22 dqf2, (55)

where k22 =12EI/l3 is the in-plane bending stiffness coefficient. Substituting equations (53)
and (55) into equation (54), the equation of motion of the single-degree-of-freedom
rotating beam can be obtained as

(Ml +Mg )q̈f2 + {k22 − u� 2(Ml +G1)}qf2 −G3q̇f2 =0. (56)

This non-linear differential equation, which describes the in-plane transverse vibration
of the beam, includes all the non-linear terms resulting from ug . This equation is a
homogeneous second order differential equation and it is non-linear in the system
co-ordinate.

6. EFFECT OF NON-LINEAR TERMS IN THE SIMPLE BEAM MODEL

In this section, the simple beam model developed in the preceding section is used
to examine the effect of considering the axial displacement ug on the beam stability.
By examining the equation of motion presented in the preceding section, it becomes
clear that the non-linearity in the beam equation due to the displacement ug is represented
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by the matrices Mg , G1, G2, and G3. It can also be noticed that the matrix G1 can be
written as

G1 =G1l +G1n , (57)

where G1l does not contribute to the non-linearity, and G1l and G1n can be defined as

G1l =gV

rxB(x) dV, G1n =gV

rB(x)qf2qT
f2B(x) dV. (58)

In this section, several cases will be considered in order to better understand the effect
of the displacement ug on the stability of the transverse vibration of the rotating beam.

Case 1: As previously mentioned in section 4, considering the effect of ug leads to a
simple form of the strain energy when the co-ordinate transformation of equation (27) is
used. Therefore, if the effect of ug is taken into consideration in formulating the strain
energy and if all the terms that result from the use of this effect are neglected when the
inertia forces are formulated, one obtains constant mass and stiffness coefficients. This is
the case of the first inconsistent model (FIM). Note that in this model, a non-linear
strain–displacement relationship is used despite the fact that the stiffness coefficient
is constant. Using this model, it can be shown that the equation of motion of the
single-degree-of-freedom rotating beam reduces to

q̈f2 =−b2qf2, b2 = k22/Ml − u� 2. (59)

This equation clearly demonstrates that if the angular velocity is greater than zk22/Ml ,
the in-plane transverse mode of vibration becomes unstable. For u� Qzk22/Ml ,
the vibration will be oscillatory and the solution is defined as

qf2 = c cos (bt+f), (60)

where c and f are constants that depend on the initial conditions.
It is interesting to note that the model described by equation (59) is similar to the model

obtained when the effect of ug is neglected and a linear strain–displacement relationship
is used. This case also leads to constant mass and stiffness coefficients, and such a model
also produces unstable solutions. One must note, however, that the definition of the
displacements used in this model is different from the one used in the FIM where the
displacement ug is introduced.

Case 2: In this case, all the non-linear inertia terms resulting from the use of ug are
neglected and only the linear terms are retained. Using this approximation, one obtains
a linear equation for the beam motion defined as

Mlq̈f2 + {k22 − u� 2(Ml +G1l )}qf2 =0, (61)

which can also be written in the simple form

q̈f2 =−b2qf2, b2 = [k22 − u� 2(Ml +G1l )]/Ml . (62)

Examining the values of G1l and Ml using equations (51) and (52), it is clear that the
in-plane transverse vibration is stable regardless of the value of the angular velocity. The
solution of this equation is in a form similar to equation (60) for all values of the angular
velocity u� . This solution is oscillatory and its amplitude is dependent on the initial
displacement.

Case 3: In this case only the term that contains G3q̇f2 in the inertia forces is neglected,
and as a result, the beam equation reduces to

(Ml +Mg )q̈f2 + {k22 − (Ml +G1)}qf2 =0. (63)



   475

Figure 2. In-plane transverse deformation obtained using case 1 and angular velocity u� =200 rad/s.

This non-linear equation can be solved using direct numerical integration methods
(Runge–Kutta). The numerical solution of this equation will be presented later in this
section.

Case 4: In this case, one considers all the non-linear terms resulting from considering
the axial displacement ug . This is the case in which the equation of motion is given by
equation (56). The solution of this non-linear equation can be obtained using direct
numerical integration methods (Runge–Kutta).

6.1.  

The numerical results obtained using the four beam models described in this section
will be compared in order to better understand the effect of the displacement ug on
the transverse vibration of the rotating beam. The model considered consists of a
beam with length l=0·5 m and a circular cross-section area A which has a diameter
d=0·01 m. This beam is made of steel with a modulus of elasticity E=2×1011 N/m2

and a mass density r=7800 kg/m3. The beam is assumed to rotate with a constant
angular velocity u� with an initial in-plane transverse displacement of 0·001 m. The
numerical results presented in this section are obtained for different values of the angular
velocity.

Figure 2 shows how the linear formulation (59) leads to an unstable solution if the
angular velocity exceeds the stability limit which is defined, in this example, as
u� =180·6 rad/s. The solution of case 2, in which the higher order terms (qf2/l)2 and (q̇f2/l)2,
are neglected, is shown in Figure 3 using angular velocities of 50, 100 and 150 rad/s.

Figure 3. In-plane transverse deformation obtained using case 2. u� values (rad/s): ——, 50; · · · · , 100;
–––, 150.
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Figure 4. In-plane transverse deformation obtained using case 2. u� values (rad/s): ——, 1000; · · · · , 1500;
–––, 2000.

Figure 4 shows that the vibration remains stable for higher angular velocities of 500, 1000,
and 15 000 rad/s. From the results presented in these two figures, it is clear that the
vibration is stable regardless of the value of the angular velocity, and the oscillation
frequency increases as the angular velocity increases. This despite the fact that the
amplitude remains equal to the initial displacement.

It is clear from equations (51), (53) and (56) that the order of magnitudes of the
terms that include (qf2/l)2 and (q̇f2/l)2 are small compared to other terms in equation
(56). As a consequence, the solutions obtained for cases 3 and 4 are approximately the
same as the solution of case 2. Figure 5 shows the in-plane transverse vibration
obtained using cases 1, 2, 3 and 4 when the angular velocity of 150 rad/s is used.
For u� =1000 rad/s, case 1 leads to an unstable solution while the three non-linear
cases have, approximately, the same solution as demonstrated by the results presented in
Figure 6. The results shown in Figure 5 also demonstrate that the solution obtained
using case 1 can be significantly different from that obtained using the other cases at
lower values of the angular velocity. It is clear from the results presented in this
section that the non-linear terms resulting from ug in the inertia force do not have a
significant effect on the accuracy and stability of the simple rotating beam model examined
in this investigation. Therefore, it is justified to neglect the effect of these non-linear
terms.

Figure 5. In-plane transverse deformation obtained using angular velocity u� =150 rad/s; ——, Case 1; · · · · ,
Case 2; –––, Case 3; –· –· , Case 4.
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Figure 6. In-plane transverse deformation obtained using angular velocity u� =1000 rad/s; ——, Case 2; · · · · ,
Case 3; –––, Case 4.

7. EFFECT OF THE AXIAL DISPLACEMENT

In the analysis presented in the preceding sections, the effect of the axial displacement
u was neglected. In this section, the effect of the axial deformation is introduced and
the effect of its coupling with the transverse deformation on the dynamics of the rotating
beam is examined. To this end, one uses the displacement field

$uv%=$S1

0
0
S2%$qf1

qf2%, (64)

where S1 is the shape function row vector associated with the axial vibration and S2 is the
shape function row vector associated with the in-plane mode of vibration. In this case, the
virtual work of the inertia forces is represented by equations (32) and (33). Using these
equations and equation (64), one obtains the equations for Ml , Mg , (Qv )l , and (Qv )g

as follows:

Ml =gV

r$ST
1S1

0
0

ST
2S2% dV, Mg =gV

r$ 0
B(x)qf2S1

S1qT
f2B(x)

B(x)qf2qT
f2B(x)% dV, (65)

(Qv )l =$(Qv )lf1

(Qv )lf2%= u� 2(L0 +Mlqf )+ u� L1q̇f , (66)

(Qv )g =$(Qv )gf1

(Qv )gf2%= u� 2(G01 +G11)qf + u� G22q̇f +G33q̇f , (67)

where B(x) is defined by equation (38) and

L0 =gV

r $xST
1

0 % dV, L1 =2 gV

r$ 0
−ST

2S1

ST
1S2

0 % dV, (68)

G01 =gV

r$00 0
xB(x)% dV, G11 =gV

r$ 0
B(x)qf2S1

1
2S

T
1qT

f2B(x)
1
2B(x)qf2qT

f2B(x)% dV, (69)
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G22 =−2 gV

r$00 0
ST

2qT
f2B(x)−B(x)qf2S2% dV, (70)

G33 =gV

r$00 −ST
1 q̇f2B(x)

−B(x)qf2q̇T
f2B(x)% dV. (71)

In the following three sections, three different beam models are considered. The first
model is the CCM in which the effect of longitudinal displacement due to transverse
vibration is considered in evaluating both the inertia and elastic forces. This model
leads to a constant stiffness matrix when the transformation of equation (27) is used.
The second model is the CIM in which the effect of longitudinal displacement caused
by bending is neglected in evaluating both the stiffness and inertia forces. This model
leads to a non-linear stiffness matrix since a non-linear strain–displacement relationship
is used and the effect of ug is neglected. The third model is the second inconsistent model
(SIM) in which the effect of longitudinal displacement due to bending is considered
in formulating the inertia forces and neglected in formulating the stiffness forces. The
results obtained using these three models clearly demonstrate that including the effect
of the geometric stiffening resulting from the longitudinal displacement caused by
bending is not the only approach to obtain a stable solution for the rotating beams at
higher values of the angular velocity. These results demonstrate that if such an effect is
consistently neglected, a stable behavior of the beam can be obtained when a non-linear
model is used.

8. CONSISTENT COMPLETE MODEL

In the CCM, the effect of longitudinal displacement caused by bending deformation is
considered in formulating both the inertia and elastic forces. Using the co-ordinate
transformation of equation (27) [5], a constant stiffness matrix can be obtained despite the
fact that a non-linear strain–displacement relationship is used.

In order to examine the effect of including the axial displacement on the beam dynamic
behavior, one considers the case of a single mode of vibration for both axial and in-plane
transverse motion. In this case of a two-degree-of-freedom system, the deformation
co-ordinates qf1 and qf2 will be represented by scalar quantities

qf1 = qf1, qf2 = qf2, (72)

and also the shape function row vectors S1 and S2 will be defined by the scalars

S1 = j, S2 =3j2 − j3. (73)

The matrix B(x) reduces to the function B(x) which is defined by equation (49).
Substituting these functions into equations (65), (68–71), one obtains

Ml =m$ 1
3

0
0
33
35%, Mg =m$ 0

−81
70 (qf2/l)

−81
70 (qf2/l)

1704
385 (qf2/l)2%, (74)

L0 =
ml
3 $10%, L1 =

11m
10 $ 0

−1
1
0%, (75)
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G01 =−
81m
70 $00 0

1%, G11 =m0qf2

l 1$ 0
−81

70

− 81
140

852
385 (qf2/l)%, (76)

G22 =$00 0
0%, G33 =m0q̇f2

l 1$00 81
70

−1704
385 (qf2/l)%. (77)

The equation of motion can be obtained by equating the virtual work of the inertia forces
and the virtual work of the elastic force. This leads to the following matrix equation for
the two-degree-of-freedom beam model:

[Ml +Mg ]q̈f −[(Qv )l +(Qv )g ]=−Kffqf , (78)

where, in this case, the stiffness matrix Kff is written as

Kff =$k11

0
0
k22%=$EA/l

0
0

12EI/l3%. (79)

Substituting equations (66) and (67) into equation (78), taking into consideration that
in this case G22 = 0, the equation of motion of the two-degree-of-freedom beam model
can be written as

[Ml +Mg ]q̈f =−Kffqf + u� 2[L0 + (Ml +G01 +G11)qf ]+ u� L1q̇f +G33q̇f . (80)

Note that in this equation the inertia matrix depends on the beam co-ordinates, while the
stiffness matrix is constant. This is the result of including the effect of ug in formulating
both the inertia and stiffness forces.

9. CONSISTENT INCOMPLETE MODEL

If the effect of longitudinal displacement caused by bending is neglected in formulating
the strain energy, the stiffness matrix of the two-degree-of-freedom model considered
in this section becomes non-linear. Also, if the effect of this displacement is neglected in
the formulation of the inertia forces, we obtain the CIM in which the effect of ug is
consistently neglected. In this case, the equation of motion of the rotating beam can be
written as

Ml q̈f +(Kff +KG +KH )qf =(Qv )l +QG , (81)

where Ml is the linear mass matrix which is defined as

Ml =gV

r$ST
1S1

0
0

ST
2S2% dV, (82)

Kff is the constant stiffness matrix, KG is the second order non-linear stiffness matrix
due to the third term of equation (26), KH is the third order non-linear stiffness matrix
resulting from the fourth term of equation (26), (Qv )l is the Coriolis and centrifugal force
vector defined by equation (66), and QG is the non-linear elastic force vector which is
defined as

QG =−
1
2 $qT

f (1(KG +KH )/1qf1)qf

qT
f (1(KG +KH )/1qf2)qf%. (83)

If the assumption of a single mode of vibration of both axial and in-plane transverse
directions is used with the shape functions previously defined in the preceding section,
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one obtains

Ml =m$ 1
3

0
0
33
35%, (84)

KG =
EA
l 0qf1

l 1$00 0
24
5%, KH =

EA
l 0qf2

l 1
2

$00 0
288
35%, (85)

QG =−
12EA

5 0qf2

l 1
2

$ 1
24
7 (qf2/l)1%, (86)

and (Qv )l and Kff are defined by equations (60) and (64), respectively. In this case, the
equations of motion of the two-degree-of-freedom model can be written as

Ml q̈f =−(Kff +KG +KH − u� 2Ml )qf + u� L1q̇f +QG . (87)

This equation is not the same as equation (80) because the effect of the axial displacement
caused by the transverse bending is neglected in formulating the inertia and elastic
forces. It will be demonstrated that the model described by equation (87) remains
stable regardless of the value of the angular velocity, thereby demonstrating that the beam
stability at higher values of the angular velocity is not dependent only on ug , but it depends
generally on the coupling between the axial and bending deformations.

10. SECOND INCONSISTENT MODEL

In this model, if the effect of the axial displacement caused by the transverse
bending is taken into consideration in formulating the inertia forces but it is neglected
in formulating the elastic forces, the non-linear strain–displacement relation is used.
The equations of motion of the rotating beam for this model can be written as

(Ml +Mg )q̈f +(Kff +KG +KH )qf =(Qv )l +(Qv )g +QG . (88)

Using the shape functions defined in the preceding two sections, one can show that the
equations of motion of the two-degree-of-freedom beam model can be written more
explicitly as

(Ml +Mg )q̈f = u� 2[L0 + (Ml +G01 +G11)qf ]+ (u� L1 +G33)q̇f

+QG −(Kff +KG +KH )qf . (89)

The results obtained using this SIM will be examined in the following section.

11. COMPARATIVE STUDY

In this section, the results obtained using the three models (CCM, CIM, SIM)
discussed in the preceding three sections are compared. The same beam model described
in the preceding sections is also used in this section. Initial displacements of 0·001 m are
assumed for both the axial and in-plane transverse deformation. A direct integration
method is used to solve the equations of motion of the three non-linear models. The results
obtained using these three non-linear models are also compared with the linear model
(FIM) in which the effect of longitudinal displacement caused by bending deformation is
neglected in formulating the inertia forces only. Figures 7 and 8 compare the results
obtained for the axial displacement qf1 using the four models when the angular velocities
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Figure 7. Axial deformation obtained using angular velocity u� =100 rad/s; ——, FIM; · · · · , CCM; ----, CIM;
– · – ·, SIM.

Figure 8. Axial deformation obtained using angular velocity u� =150 rad/s; key as Figure 7.

of 100 and 150 rad/s are used. It is clear from the results presented in these figures that
the longitudinal vibration is approximately the same for the four models. This implies, for
a low range of the angular velocity, that the FIM gives a good approximation for the
longitudinal vibration as compared to the non-linear models. As the angular velocity
increases, the longitudinal displacement remains stable but the vibration amplitude
increases. Figures 9 and 10 show the in-plane transverse vibration obtained using the four
models for angular velocities of 100 and 150 rad/s. By comparing the results presented in
these two figures and the results presented in Figures 3 and 4, it becomes clear that
including the axial displacement slightly increases oscillation amplitude. It is also clear that
neglecting the effect of ug in formulating the elastic forces tends to reduce the oscillation
amplitude, and the SIM, in which the effect of longitudinal displacement caused by
bending is neglected in formulating the elastic forces only, has the least amplitude.
Figure 11 shows the maximum oscillation amplitude obtained using the four methods
as function of the angular velocity in the low angular velocity range. It is clear from the
results presented in this figure that the FIM has the highest maximum amplitude while
the SIM has the lowest. Figure 12 shows that the axial displacements obtained using the
three models (CCM, CIM, SIM) are the same when the angular velocity is increased to
1000 rad/s. Figure 13 shows the in-plane vibration predicted using these three models when
the angular velocity is equal to 1000 rad/s. It is clear that the motion remains oscillatory
and stable and the CCM has the highest amplitude when compared to the other two
models. Figure 14 shows the maximum amplitude of the transverse vibration obtained
using the three models for the high range of the angular velocity. It is clear from the results
presented in the last two figures that, while all the three non-linear models lead to a
stable oscillation at relatively high values of the angular velocity, the SIM in which the
effect of the longitudinal displacement caused by bending is included in the inertia forces
only, gives the lowest amplitude. The stability of the SIM depends on the sign of the term
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Figure 9. In-plane deformation obtained using angular velocity u� =100 rad/s; key as Figure 7.

Figure 10. In-plane deformation obtained using angular velocity u� =150 rad/s; key as Figure 7.

Ml +G1l (see equation (61)) which, in turns, depends on the assumed displacement field.
For a given model, a negative sign of this term leads to a stable solution, while a positive
sign leads to an unstable solution. Table 1 shows different assumed displacement fields and
the coefficient Ml +G1l that result from the use of these fields when a single mode of
vibration is used.

12. TRANSLATING AND ROTATING BEAM

In the preceding section, only the case of a rotating beam is considered. In this and
the following sections one considers the case of a rotating and translating beam and
examines the effect of the longitudinal displacement due to bending on the stability of
the rigid body modes. First the equations that govern the rigid body motion are
summarized.

12.1.   

In the analysis presented in this section, the beam is assumed to rotate with a constant
angular velocity about an axis passing through one of its end points as shown in Figure 15.
It is also assumed that the beam can have an arbitrary planar rigid body translation.
In the case of rigid body motion, the position vector of an arbitrary point on the beam
center line can be written as

r=R+Aūo ,
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Figure 11. Maximum transverse displacement as a function of the angular velocity; key as Figure 7.

Figure 12. Axial deformation obtained using angular velocity u� =1000 rad/s: ——, CCM; · · · · , CIM;
–––, FIM.

where R=[Rx Ry ]T is the position vector of the reference point, A is the planar
transformation matrix defined as

A=$cos u

sin u

−sin u

cos u % (90)

and ūo =[x 0]T is the position vector of the arbitrary point.
The velocity and acceleration vectors of an arbitrary point can be written as

ṙ=R� + u� Au ūo , r̈=R� − u� 2Aūo ,

where Au = 1A/1u. The virtual work of the inertia force can be written as

dWi =gV

rr̈T dr dV,

where dr is the virtual change of the position vector, which is defined in the case of specified
angular rotation as

dr= dR.

Substituting the values of r̈ and dr into the virtual work expression, one obtains

dWi =m6$R� x

R� y%
T

−
1
2

u� 2l$cos u

sin u%
T

7$dRx

dRy%.

If there are no gravity or external forces acting on the beam, the virtual work of the inertia
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Figure 13. In-plane deformation due to angular velocity u� =1000 rad/s; key as Figure 12.

Figure 14. Maximum transverse displacement as a function of the angular velocity; key as Figure 12.

force is identically equal to zero and the equations of the reference point motion can be
written as

R� x = 1
2lu�

2 cos u, R� y = 1
2lu�

2 sin u.

Integrating these equations once and twice, assuming zero initial conditions, and keeping
in mind that u= u� t, one obtains the reference point velocity and displacement as

R� x = 1
2lu� sin u, R� y = 1

2lu� (1−cos u), Rx =(l/2)(1−cos u), Ry =(l/2)(u� t−sin u).

(91)

It is clear from the displacement equations that the motion in the x direction is oscillatory,
while the motion in the y direction increases with time. The results obtained in this section
for the simple rigid body model will be used to provide an explanation for some of the
results obtained using the flexible body model.

12.2.   

In this section, the effect of the displacement due to bending on the dynamic equations
of the rotating and translating flexible beam is examined. To this end, the planar beam
model shown in Figure 15 is used. The beam is assumed to rotate with an angular velocity
u� and can have an arbitrary rigid body base translation. The global position vector of an
arbitrary point on the beam can be written as

r=R+Aū, (92)

where R=[Rx Ry ]T is the global position vector of the reference point, A is the planar
transformation matrix defined by equation (90), and ū is the local position vector of the
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Figure 15. Rotating and translating beam model.

arbitrary point on the beam center line defined in the beam co-ordinate system. The vector
ū can be written as

ū= ūo + ūf , (93)

where in the case of a slender beam ūo =[x 0]T, and ūf is the deformation vector defined
as

ūf =$u+ ug

v %, (94)

where u is the axial displacement, ug is the longitudinal displacement resulting from
the bending deformation, and v is the transverse displacement. These displacement
components are defined as described in the preceding sections as

$uv%=$S1

0
0
S2%$qf1

qf2%, ug =−1
2q

T
f2B(x)qf2, (95, 96)

where S1 and S2 are the axial and bending shape functions row vectors, qf1 and qf2 are
respectively the vectors of axial and bending time dependent co-ordinates, and B(x) is
the matrix defined in the preceding sections.

13. INERTIA FORCES OF THE TRANSLATING AND ROTATING BEAM

If the beam is assumed to rotate with a constant angular velocity, the virtual change
in the global position vector of an arbitrary point on the beam can be written as

dr= dR+A dūf . (97)

The velocity and acceleration vectors are defined as

ṙ=R� + u� Au ū+Aū
.

f , r̈=R� − u� 2Aū+2u� Au ū
.

f +Aū
..

f . (98, 99)

The virtual work of the inertia forces can be defined as

dWi = dWl + dWg =gV

rr̈T dr dV, (100)



   487

where dWl is the virtual work which does not include the effect of ug , while dWg is the
change of the virtual work as a result of including the axial displacement ug . If equations
(97) and (99) are substituted into equation (100), the two components of the virtual work
can be defined as

dWl = dWlRx + dWlRy + dWlu + dWlv , (101)

dWg = dWgRx + dWgRy + dWgu + dWgv + dWgug , (102)

where the components of the virtual work dWl are defined as

dWlRx =gV

r[R� x − u� 2{(x+ u) cos u− v sin u}−2u� {u̇ sin u+ v̇ cos u}

+ ü cos u− v̈ sin u] dRx dV, (103)

dWlRy =gV

r[R� y − u� 2{(x+ u) sin u+ v cos u}−2u� {−u̇ cos u+ v̇ sin u}

+ ü sin u+ v̈ cos u] dRy dV, (104)

dWlu =gV

r[R� x cos u+R� y sin u− u� 2(x+ u)−2u� v̇+ ü] du dV, (105)

dWlv =gV

r[−R� x sin u+R� x cos u− u� 2v+2u� u̇+ v̈] dv dV, (106)

and the components of dWg are defined as

dWgRx =gV

r[−u� 2ug cos u−2u� u̇g sin u+ üg cos u] dRx dV, (107)

dWgRy =gV

r[−u� 2ug sin u+2u� u̇g cos u+ üg sin u] dRy dV, (108)

dWgu =gV

r[üg − u� 2ug ] du dV, dWgv =2 gV

ru� u̇g dv dV, (109, 110)

dWgug =gV

r[R� x cos u+R� y sin u− u� 2(x+ u+ ug )−2u� v̇+ ü+ üg ] dug dV. (111)

If the effect of the longitudinal displacement due to bending is neglected, dWg is identically
equal to zero. One also notes that both dv and dug can be expressed in terms of the virtual
change in the bending deformation generalized co-ordinates.
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The virtual work components of equations (101) and (102) can be written as

dWl = q̈TMl dq−(Qv )T
l dq, dWg = q̈TMg dq−(Qv )T

g dq, (112, 113)

where q is the vector of the generalized co-ordinates which is defined as

qT = [Rx Ry qT
f1 qT

f2], (114)

Ml and Mg are mass matrices, and (Qv )l and (Qv )g are the Coriolis and centrifugal force
vectors.

The mass matrix Mg and the vector (Qv )g are mainly due to the effect of the longitudinal
displacement caused by the bending deformation. The matrix Ml and the vector (Qv )l are
the mass matrix and the centrifugal and Coriolis force vector that result if the effect of
the longitudinal displacement ug caused by the bending deformation is neglected. Using
equations (103–113), it can be shown that

1 0 S1 cos u −S2 sin u

0 1 S1 sin u S2 cos u
rG
G

G

K

k
ST

1 cos u ST
1 sin u ST

1 S1 0
G
G

G

L

l

dV,Ml =gV

r$MlRR

MlfR

MlRf

Mlff %=gV

−ST
2 sin u ST

2 cos u 0 ST
2 S2

(115)

(Qv )lRx

(Qv )lRy(Qv )l =G
G

G

K

k
(Qv )lf1

G
G

G

L

l

(116)= $(Qv )lR

(Q)lf %= u� 2$L0R +MlRfqf

L0f +Mlffqf %+ u� $L1R q̇f

L1f q̇f%,

(Qv )lf2

where

L0R =gV

r$x cos u

x sin u% dV, L1R =2 gV

r$ S1 sin u

−S1 cos u

S2 cos u

S2 sin u% dV, (117)

L0f =gV

r$xST
1

0 % dV, L1f =2 gV

r$ 0
−ST

2S1

ST
1S2

0 % dV. (118)

The non-linear matrix Mg and vector (Qv )g can also be written more explicitly as

0 0 0 qT
f2B cos u

0 0 0 qT
f2B sin u

rG
G

G

K

k
0 0 0 ST

1qT
f2B

G
G

G

L

l

dV,Mg =$ 0
MgfR

MgRf

Mgff%=gV

Bqf2 cos u Bqf2 sin u Bqf2S1 Bqf2qT
f2B

(119)

(Qv )gRx

(Qv )gRy(Qv )g =G
G

G

K

k
(Qv )gf1

G
G

G

L

l

(120)=$(Qv )gR

(Qv )gf%= u� 2$G1Rqf

G1fqf%+ u� $G2R q̇f

G2f q̇f%+$G3R q̇f

G3f q̇f%,

(Qv )gf2



   489

where

G1R =
1
2 gV

r$00 qT
f2B cos u

qT
f2B sin u% dV, G2R =2 gV

r$00 qT
f2B sin u

−qT
f2B cos u% dV, (121)

G3R =gV

r$00 −q̇T
f2B cos u

−q̇T
f2B sin u% dV, (122)

G1f =gV

r$ 0
Bqf2S1

1
2S

T
1qT

f2B
xB+ 1

2Bqf2qT
f2B% dV, (123)

G2f =−2 gV

r$00 0
ST

2qT
f2B−Bqf2S2% dV, G3f =gV

r$00 −ST
1 q̇f2B

−Bqf2q̇T
f2B% dV. (124)

Note the dependence of the matrix Mg and the vector (Qv )g on the matrix B that appears
in the equation of the longitudinal displacement caused by the bending deformation.

14. DYNAMIC EQUATIONS OF THE TRANSLATING AND ROTATING BEAM

In this section, the dynamic equations of motion of the rotating and translating beam
model used in this investigation are developed. This model will be used to examine the
effect of the coupling between the rigid body and deformation modes on the beam
dynamics and stability. As in the preceding sections, one considers a beam model in
which one mode of vibration is used to describe the axial displacement, and one mode of
vibration is used to describe the transverse deformation. This is in addition to two rigid
body modes which describe the arbitrary translation of the beam co-ordinate system.
This translation is described by the displacement Rx and Ry . Using this model, the vectors
qf1 and qf2 reduce to the scalars qf1 and qf2. One assumes that the shape functions associated
with these two co-ordinates are, respectively, given by

S1 = j, S2 =3j2 − j3. (125)

In this case, the matrix B reduces also to the function B defined as

B=−(9/l)(4
3j

3 − j4 + 1
5j

5), (126)

Using equations (125) and (126), it can be shown that the vectors and matrices presented
in the preceding section can be written as

1 0 1
2 cos u −3

4 sin u

0 1 1
2 sin u 3

4 cos u
mG
G

G

K

k
1
2 cos u 1

2 sin u 1
3 0

G
G

G

L

l

, (127)Ml =$MlRR

MlfR

MlRf

Mlff%=

−3
4 sin u 3

4 cos u 0 33
35

L0R =
ml
2 $cos u

sin u%, L1R =m$ sin u

−cos u

3
2 cos u
3
2 sin u%, (128)

L0f =
ml
3 $10%, L1f =

11m
10 $ 0

−1
1
0%, (129)
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0 0 0 −3
2 cos u

0 0 0 −3
2 sin uG

G

G

K

k
0 0 0 −81

70

G
G

G

L

l

, (130)Mg =$MgRR

MgfR

MgRf

Mgff%=m0qf2

l 1
−3

2 cos u −3
2 sin u −81

70
1704
385 (qf2/l)

G1R =−
3m
4 0qf2

l 1$00 cos u

sin u%, G2R =3m0qf2

l 1$00 −sin u

cos u %, (131)

G3R = 3
2m0q̇f2

l 1$00 cos u

sin u%, G1f =m$ 0
−81

70 (qf2/l)
− 81

140 (qf2/l)
−81

70 +
852
385 (qf2/l)2%, (132, 133)

G2f =m$0 0
0 0%, G3f =m$00 81

70 (q̇f2/l)
−1704

385 (q̇f2/l)(qf2/l)%. (134)

14.1.   

The virtual work of the elastic forces is defined as

dWs =−qTK dq, (135)

where the stiffness matrix K is defined as

K=$00 0
Kff%. (136)

The matrix Kff is the same matrix used for the consistent complete model discussed in the
preceding sections. This matrix is constant despite the fact that a non-linear
strain–displacement relationship is used to formulate the strain energy.

If one assumes that there are no external forces acting on the beam, the virtual work
done by the inertia forces is equal to that done by the elastic forces. This will lead to the
matrix equation of the beam motion, which can be written as

(Ml +Mg )q̈+Kq=(Qv )l +(Qv )g . (137)

Substituting equations (127) and (130) into equation (137) leads to the following
acceleration equations:

MlRRR� +(MlRf +MgRf )q̈f =(Qv )lR +(Qv )gR , (138)

(MlfR +MgfR )R� +(Mlff +Mgff )q̈f =−Kffqf +(Qv )lf +(Qv )gf . (139)

Equations (138) and (139) consist of four non-linear coupled second order ordinary
differential equations which can be solved using direct numerical integration methods.

15. COUPLING BETWEEN RIGID BODY AND DEFORMATION MODES

The equations of motion of the rotating and translating beam presented in the preceding
section are highly non-linear if all the non-linear terms resulting from including the effect
of the longitudinal displacement caused by the bending deformation are considered. It was
demonstrated, however, by the numerical results presented in the preceding sections that
the effect of the higher order terms can be neglected when the inertia forces are formulated.
In this case one obtains a set of linearized equations which can be used to obtain an
accurate solution for the dynamics of the rotating beam. By neglecting the second and



   491

higher order non-linear terms, the equations of motion of the beam can be written in
the form

R� =$R� x

R� y%= u� 2H1R +(u� 2H2R +H3R )qf + u� H4R q̇f , (140)

q̈f =$q̈f1

q̈f2%= u� 2H1f +(u� 2H2f +H3f )qf + u� H4f q̇f , (141)

where

H1R =(1/m)(L0R −MlRfH1f ), H2R =(1/m)MlRf (I−H2f ), (142)

H3R =−(1/m)MlRfH3f , H4R =(1/m)(L1R −MlRfH4f ), (143)

H1f =[Mlff −(1/m)MlfRMlRf ]−1(L0f −(1/m)MlfRL0R ), (144)

H2f = I+[Mlff −(1/m)MlfRMlRf ]−1Glf , (145)

H3f =−[Mlff −(1/m)MlfRMlRf ]−1Kff , (146)

H4f =[Mlff −(1/m)MlfRMlRf ]−1(L1f −(1/m)MlfRL1R ), (147)

in which I is the identity matrix and the matrix G1f is reduced in this case to

G1f =gV

r$00 0
xB% dV.

The vectors and matrices in the preceding equation can be written more explicitly for the
beam model used in this investigation as

H1R =$00%, H2R =$00 −162
71 sin u

162
71 cos u %, (148)

H3R =$(6k11/m) cos u

(6k11/m) sin u

−140
71 (k22/m) sin u

140
71 (k22/m) cos u %, H4R =$ 22

71 sin u

−22
71 cos u

−3
5 cos u

−3
5 sin u%, (149)

H1f = l$10%, H2f =$10 0
−145

71%, (150)

H3f =−$12k11/m
0

0
560
213k22/m%, H4f =$ 0

−196
213

21
5

0%. (151)

It can be shown that if the effect of the axial displacement is neglected, the equation for
the in-plane transverse deformation is given by

q̈f2 = (u� 2 − b2)qf2, (152)

where b=1·6214zk22/m . It is clear that this equation leads to an unstable
solution if u� q 1·6214zk22/m . Comparing this stability result with stability result
presented by equation (59), one can show that the reference translation increases the
stability range.
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Figure 16. Rx displacement when the angular velocity u� =200 rad/s: ——, LFM; · · · · , NFM; –––, RBM.

15.1.  

In this section, the beam model and the initial conditions described in the first part of
this paper are used to examine the effect of the longitudinal displacement ug caused by the
bending deformation on the coupling between the rigid body and the deformation modes.
If the effect of the axial displacement is neglected, one obtains an unstable solution if
the angular velocity u� q 284·4 rad/s, as demonstrated by equation (152). In the numerical
investigation presented in this section, three models are considered. The first model is the
rigid body model (RBM) in which the rotating and translating beam is assumed to be rigid.
The equations of motion of this model are presented in section 12 of this paper. The second
model, referred to as the linear flexible model (LFM), does not include the effect of the
longitudinal displacement caused by the bending deformation. In this model ug is assumed
to be equal to zero and a linear strain displacement relationship is used to formulate the
constant stiffness matrix coefficients. In the third model, which is referred to as the
non-linear flexible model (NFM), the effect of the longitudinal displacement ug caused by
bending is considered using the consistent complete model described in section 8.

Figures 16 and 17 show the results obtained for the reference motion using the three
models (RBM, LFM, NFM) when the angular velocity of the beam is equal to 200 rad/s.
It is clear from the results presented in these two figures that the elastic deformation does
not have a significant effect on the rigid body motion of the beam at this low value of
the angular velocity. Figures 18 and 19 show the results obtained using the NFM and RBM
when the angular velocity is equal to 1000 rad/s. For this high value of the angular velocity
(u� q 284·4), the LFM has an unstable solution. The results presented in Figures 18 and
19 demonstrate that the reference motion of the beam is stable when the effect of the

Figure 17. Ry displacement when the angular velocity u� =200 rad/s; key as Figure 16.
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Figure 18. Rx displacement when the angular velocity u� =1000 rad/s; ——, NFM; · · · · , RBM.

Figure 19. Ry displacement when the angular velocity u� =1000 rad/s; key as Figure 18.

longitudinal displacement due to bending is considered. As a consequence, the stability of
the elastic modes leads to the stability of the rigid body modes of the simple rotating beam
model used in this investigation.

In order to examine the effect of the reference motion on the elastic deformation of the
beam, another model in which the reference motion of the beam is assumed to be equal
to zero is considered. This model will be referred to as NRFM. Figures 20 and 21 show
a comparison between the results obtained using the three different models (LFM, NFM,
NRFM). In Figure 20, the axial displacement co-ordinate qf1 is plotted as a function of
time when the angular velocity is equal to 200 rad/s. It is clear from the results presented
in this figure that the reference motion and the non-linear terms do not have significant
effect on the axial displacement at this low value of the angular velocity. In Figure 21,
the in-plane transverse deformation co-ordinate is plotted as a function of time for the
same value of the angular velocity. It is clear from this figure that the results obtained
using the NFM lead to a lower oscillation amplitude as compared to the other models.
Figures 22 and 23 show the numerical results obtained when the angular velocity is
increased to 1000 rad/s.

As demonstrated by the numerical results presented in this section, the stability of the
elastic modes resulting from the use of the effect of the longitudinal displacement caused
by the bending deformation leads to the stability of the rigid body modes. It can be
also demonstrated that the rigid body modes remain stable if the effect of the
longitudinal displacement due to the bending deformation is consistently neglected when
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Figure 20. Axial deformation when the angular velocity u� =200 rad/s; ——, LFM; · · · · , NFM; –––, NRFM.

Figure 21. In-plane transverse deformation due to angular velocity u� =200 rad/s; key as Figure 20.

Figure 22. Axial deformation when the angular velocity u� =1000 rad/s; ——, NFM; · · · · , NRFM.

Figure 23. In-plane transverse deformation due to angular velocity u� =1000 rad/s; key as Figure 22.
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Figure 24. Rx displacement for CIM when the angular velocity u� =1000 rad/s.

Figure 25. Rg displacement for CIM when the angular velocity u� =1000 rad/s.

both the inertia and elastic forces are formulated. This is the case that corresponds to the
consistent incomplete model discussed in section 9. Figures 24 and 25 show the reference
displacements Rx and Ry as functions of time when the angular velocity of the beam is equal
to 1000 rad/s. The results presented in these figures are obtained using the assumptions
of the CIM discussed in section 10.

16. SUMMARY AND CONCLUSIONS

In many investigations on the rotating beam problem, it was pointed out that the use
of geometric centrifugal stiffness in the inertia forces is necessary to obtain a stable solution
for the beam at high values of angular velocity. It is clearly demonstrated in this paper
that such an approach is not the only method which can be used to achieve beam stability
in a high range of the angular velocities. This important result was demonstrated using
simple beam models. A single-degree-of-freedom beam model was first used to examine
the effect of higher order terms in the inertia forces on the dynamics and stability of
motion of the beam. In this single-degree-of-freedom beam model, only the transverse
deformation of the beam is considered. A two-degree-of-freedom model was also
developed and used to examine the effect of the coupling between the axial and bending
displacements. Three different non-linear models were developed in this investigation.
The first model is the CCM in which the effect of the longitudinal displacement due to
bending is considered in both the inertia and the elastic forces. The second model is the
CIM in which the effect of the longitudinal displacement due to bending is neglected in
formulating both the elastic and inertia forces. The third model is the SIM in which the
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effect of the longitudinal displacement due to bending is considered in the inertia forces,
but it is neglected in the elastic forces. The numerical results presented in this paper clearly
demonstrate that all the three models (CCM, CIM, SIM) lead to a stable solution as the
angular velocity of the beam increases. More significantly, these results show that it is not
necessary to include the effect of the geometric centrifugal stiffening term in the inertia
forces in order to obtain a stable solution for the rotating beam at higher values of angular
velocity. If this effect is consistently neglected in both the inertia and elastic forces in a
non-linear elastic model, the dynamic solution of the rotating beam equation remains
stable at high values of the angular velocity.

The equations of motion that govern the dynamics of rotating and translating beams
were also examined in this paper. The effect of longitudinal displacement caused by
bending deformation on the dynamics and stability of the rotating and translating beams
was discussed. It was shown that the reference translation of the beam increases the
stability limit when the effect of axial displacement is neglected. Several models were
developed and used to examine the effect of the coupling between the rigid body and
deformation modes of the rotating and translating beams. It was demonstrated by the
numerical results presented in this paper that the stability of the elastic modes leads to the
stability of the rigid body modes at high values of the angular velocity of the beam
reference. Stable solution of the elastic modes can be obtained by considering the effect
of the longitudinal displacement due to bending or by using the consistent incomplete
model. In both cases, the solution for the rigid body modes is stable regardless of the value
of the angular velocity of the beam.
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